Managing Invasive Range Plants in Beef-Cattle Grazing Systems:
The Tale of Sericea Lespedeza in Native Tallgrass Prairie

KC Olson
Department of Animal Sciences & Industry
Kansas State University
Tallgrass Prairie in North America

- Covered 165 million acres prior to European settlement
 - 6.2 million acres (4%) remains

- The remnant is home to more than:
 - 500 plant species
 - 700 insect species
 - 185 bird species
 - 40 mammal species

- More ecologically diverse than rain forest ecosystems

- Provides an array of ecosystem services including carbon sequestration and water recycling

- Fire return intervals of 2 to 4 years
Tallgrass Prairie in North America

- Covered 165 million acres prior to European settlement
 - 6.2 million acres (4%) remains

- The remnant is home to more than:
 - 500 plant species
 - 700 insect species
 - 185 bird species
 - 40 mammal species

- More ecologically diverse than rain forest ecosystems

- Provides an array of ecosystem services including carbon sequestration and water recycling

- Fire return intervals of 2 to 4 years
Tallgrass Prairie in North America

- Covered 165 million acres prior to European settlement
 - 6.2 million acres (4%) remains
- The remnant is home to more than:
 - 500 plant species
 - 700 insect species
 - 185 bird species
 - 40 mammal species
- More ecologically diverse than rain forest ecosystems
- Provides an array of ecosystem services including carbon sequestration and water recycling
- Fire return intervals of 2 to 4 years
Tallgrass Prairie in North America

• Covered 165 million acres prior to European settlement
 • 6.2 million acres (4%) remains

• The remnant is home to more than:
 • 500 plant species
 • 700 insect species
 • 185 bird species
 • 40 mammal species

• More ecologically diverse than rain forest ecosystems

• Provides an array of ecosystem services including carbon sequestration and water recycling

• Fire return intervals of 2 to 4 years
Tallgrass Prairie in North America

- Dominated by C4 native grasses
 - Leguminous native forbs fix N
 - Capable of producing ~ 4,000 kg DM per ha without agronomic inputs
 - Supports yearling cattle gains that exceed 1 kg per day during summer

- Annually home to:
 - ~ 1.3 million transient stocker cattle
 - ~ 500,000 beef cows

- Provides sustainable income for many families and rural communities

- Susceptible to invasion by exotic plants
Sericea Lespedeza: An Ecological Transformer

“About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed transformers.”

- Richardson et al. (2001) Diversity & Distributions 6:93-107
Sericea Lespedeza: An Ecological Transformer

“All about 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed transformers.”

- Richardson et al. (2001) Diversity & Distributions 6:93-107

“(Wild-type) sericea (lespedeza) is the plutonium of the plant community”
- Anonymous
Sericea Lespedeza: An Ecological Transformer

“About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed **transformers**.”

- Richardson et al. (2001) Diversity & Distributions 6:93-107

“(Wild-type) sericea (lespedeza) is the plutonium of the plant community”
– Anonymous

Wild-type sericea lespedeza is better likened to a feral hog
Sericea Lespedeza: An Ecological Transformer

“About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed **transformers.**”

- Richardson et al. (2001) Diversity & Distributions 6:93-107

“(Wild-type) sericea (lespedeza) is the plutonium of the plant community”
– Anonymous

Wild-type sericea lespedeza is better likened to a feral hog
Sericea Lespedeza: An Ecological Transformer

- Tolerant of poor soils
- Deeply-rooted perennial
- Robust canopy
- Resistant to grazing
- High in condensed tannins
- Prolific seed production
- Extended seed dormancy
- Treatment with specialty herbicides is common
 - Herbicide treatment results in collateral damage to non-target native plants, insects, and wildlife
Where to begin? Start with basic questions.
How does [CT] fluctuate over time?

Effect of harvest date on concentration and protein-binding capacity* of CT in sericea lespedeza (DM basis)

<table>
<thead>
<tr>
<th>Sampling date</th>
<th>Growth stage</th>
<th>[CT], g/kg</th>
<th>Protein-binding [CT], g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1</td>
<td>Single-stem</td>
<td>103.9<sup>a</sup></td>
<td>48.0<sup>a</sup></td>
</tr>
<tr>
<td>July 1</td>
<td>Multiple-stem</td>
<td>151.1<sup>b</sup></td>
<td>68.6<sup>b</sup></td>
</tr>
<tr>
<td>August 1</td>
<td>Budding</td>
<td>191.1<sup>d</sup></td>
<td>94.0<sup>c</sup></td>
</tr>
<tr>
<td>September 1</td>
<td>Flowering</td>
<td>169.4<sup>c</sup></td>
<td>88.6<sup>a</sup></td>
</tr>
<tr>
<td>October 1</td>
<td>Mature</td>
<td>145.4<sup>b</sup></td>
<td>69.6<sup>b</sup></td>
</tr>
<tr>
<td>SEM</td>
<td>-</td>
<td>5.02</td>
<td>1.05</td>
</tr>
</tbody>
</table>

* Total phenolic compounds which precipitated proteins.

^{a, b, c, d} Within a column, means without a common superscript differ ($P < 0.01$).

Preedy et al., 2013
How much will experienced cattle eat?

Relative abundance of sericea lespedeza in diets of beef cows grazing native range in the Kansas Flint Hills

<table>
<thead>
<tr>
<th>Date</th>
<th>1-Jun</th>
<th>1-Jul</th>
<th>1-Aug</th>
<th>1-Sep</th>
<th>1-Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative abundance, % of diet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preedy et al., 2013

a, b, c, d Means without a common superscript differ ($P < 0.01$).
How much will naive cattle eat?

Relative abundance of sericea lespedeza in diets of yearling beef steers grazing native range in the Kansas Flint Hills

![Graph showing relative abundance of sericea lespedeza in diets of yearling beef steers over time.](image-url)

Sowers et al., 2019
Can ruminal microbes adapt to a high CT diet?

Effects of Culture Substrate and Prior Tannin Exposure on Total VFA Concentration

Hoehn et al., 2018

a, b, c, d Means with unlike superscripts differ ($P < 0.001$).
e, f High CT or tannin-free substrate.
g, h Adapted to high CT or tannin-free substrate for 21 d.
Effects of sericea lespedeza contamination* on intake of tallgrass prairie hay by beef cows

Can we study intake in confinement?

Eckerle et al., 2011a

* Contaminated prairie hay = 5.5% CP, 41% ADF
* Uncontaminated hay = 5.4% CP, 40% ADF
Can the effects of CT on ruminal N availability be managed?

Binding affinity of condensed tannins for bovine serum albumin (BSA) in the presence of polyethylene glycol (PEG) or corn steep liquor (CSL)*

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mitigator</th>
<th>Mitigator Dose(^a)</th>
<th>True Protein Availability(^b) (%)</th>
<th>CT-Bound Protein(^c) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannin + BSA</td>
<td>None</td>
<td>0</td>
<td>42.7</td>
<td>57.3</td>
</tr>
<tr>
<td>Tannin + BSA</td>
<td>PEG</td>
<td>16</td>
<td>59.0</td>
<td>41.0</td>
</tr>
<tr>
<td>Tannin + BSA</td>
<td>CSL</td>
<td>16</td>
<td>155.7</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\) Mitigator dose is expressed as mg/mg BSA in the original sample.

\(^b\) True protein availability was expressed as % BSA protein in the original sample.

\(^c\) CT-bound protein was expressed as the inverse of true protein availability.

* CSL = 45.1% DM, 34.4% CP (DM basis).
Can the effects of CT on ruminal N availability be managed?

Effects of increasing dose of corn steep liquor (CSL) on intake and digestion of tallgrass prairie hay contaminated by sericea lespedeza

<table>
<thead>
<tr>
<th></th>
<th>Corn steep liquor intake, (kg DM /d)</th>
<th>Item</th>
<th>0</th>
<th>0.6</th>
<th>1.2</th>
<th>1.8</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forage DMI, g/kg BW^{0.75}</td>
<td>69.9^{a}</td>
<td>80.7^{b}</td>
<td>80.9^{b}</td>
<td>84.6^{b}</td>
<td>3.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total-tract DM Digestibility, %</td>
<td>52.6^{a}</td>
<td>55.6^{a}</td>
<td>65.6^{b}</td>
<td>66.3^{b}</td>
<td>2.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total-tract N digestibility, %</td>
<td>-1.5^{a}</td>
<td>18.6^{b}</td>
<td>51.7^{c}</td>
<td>52.3^{c}</td>
<td>1.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total digestible DMI, g/kg BW^{0.75}</td>
<td>40.9^{a}</td>
<td>55.0^{ab}</td>
<td>75.2^{bc}</td>
<td>87.6^{c}</td>
<td>2.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eckerle et al., 2011b

a, b, c Means within a row lacking common superscripts differ (P > 0.05).
Can CT mitigation influence diet selection?

Effects of low-level CSL supplementation on forage intake and total tract digestion

<table>
<thead>
<tr>
<th>Item</th>
<th>CSL intake, (kg DM/d)</th>
<th>0</th>
<th>0.6</th>
<th>SEM</th>
<th>P - Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncontaminated forage DMI, g/kg BW(^{0.75})</td>
<td></td>
<td>43.6</td>
<td>41.6</td>
<td>3.10</td>
<td>0.65</td>
</tr>
<tr>
<td>Contaminated forage DMI, g/kg BW(^{0.75})</td>
<td></td>
<td>50.3</td>
<td>63.0</td>
<td>2.48</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Total forage DMI, g/kg BW(^{0.75})</td>
<td></td>
<td>93.9</td>
<td>104.7</td>
<td>3.90</td>
<td>0.05</td>
</tr>
<tr>
<td>Total-tract DM digestibility, %</td>
<td></td>
<td>50.5</td>
<td>53.9</td>
<td>1.66</td>
<td>0.17</td>
</tr>
<tr>
<td>Total digestible DMI, g/kg BW(^{0.75})</td>
<td></td>
<td>48.7</td>
<td>63.7</td>
<td>3.49</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

Eckerle et al., 2011c
Effects of corn steep liquor supplementation on the abundance of sericea lespedeza in diets of grazing beef cows

Preedy et al., 2013

** Treatments differ within month ($P < 0.01$)
Can targeted grazing by small ruminants be used to control sericea lespedeza?

Effect of late-season grazing by sheep on weekly herbivory of sericea lespedeza

- Steers only
- Steers + Sheep

SEM = 3.10

Wk 1: Steers only = 10, Steers + Sheep = 10
Wk 2: Steers only = ns, Steers + Sheep = 10
Wk 3: Steers only = 10, Steers + Sheep = 20
Wk 4: Steers only = 20, Steers + Sheep = 20
Wk 5: Steers only = 20, Steers + Sheep = 20
Wk 6: Steers only = 20, Steers + Sheep = 20
Wk 7: Steers only = 20, Steers + Sheep = 20
Wk 8: Steers only = ns, Steers + Sheep = 40
Wk 9: Steers only = ns, Steers + Sheep = 80

* Treatments differ within week (P < 0.01)

Lemmon et al., 2017
Can targeted grazing by small ruminants be used to control sericea lespedeza?

Effect of late-season grazing by sheep on seed production by sericea lespedeza

Lemmon et al., 2017

Means with unlike superscripts differ ($P < 0.01$)
Can targeted grazing by small ruminants be used to control sericea lespedeza?

Lemmon et al., 2017
What if we slightly change something we already do?
What if we slightly change something we already do?
Fire timing and sericea lespedeza basal cover

What if we slightly change something we already do?

Sericea lespedeza, % basal cover

Early spring

Mid-summer

Late summer

SEM = 1.559

a, b Means w/ unlike superscripts differ ($P \leq 0.01$)
What if we slightly change something we already do?

Fire timing and sericea lespedeza whole-plant mass

Whole-plant DM weight, mg/plant

Early spring

Mid-summer

Late summer

SEM = 452.7

Alexander et al., 2019

a, b Means w/ unlike superscripts differ ($P \leq 0.01$)
What if we slightly change something we already do?

Fire timing and sericea lespedeza seed production

<table>
<thead>
<tr>
<th>Season</th>
<th>Seeds, no./stem</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early spring</td>
<td>800 (a)</td>
<td>139.4</td>
</tr>
<tr>
<td>Mid-summer</td>
<td>100 (b)</td>
<td></td>
</tr>
<tr>
<td>Late summer</td>
<td>100 (b)</td>
<td></td>
</tr>
</tbody>
</table>

Means w/ unlike superscripts differ ($P \leq 0.01$)

Alexander et al., 2019
<table>
<thead>
<tr>
<th>Pasture</th>
<th>Spring Burn 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture 5</td>
<td>27524.10 mg</td>
</tr>
<tr>
<td>Pasture 6</td>
<td>35719.20 mg</td>
</tr>
<tr>
<td>Pasture 9</td>
<td>25832.90 mg</td>
</tr>
<tr>
<td>Pasture 1</td>
<td>691.50 mg</td>
</tr>
<tr>
<td>Pasture 4</td>
<td>12.10 mg</td>
</tr>
<tr>
<td>Pasture 7</td>
<td>698.40 mg</td>
</tr>
<tr>
<td>Pasture 2</td>
<td>0 mg</td>
</tr>
<tr>
<td>Pasture 3</td>
<td>0 mg</td>
</tr>
<tr>
<td>Pasture 8</td>
<td>0 mg</td>
</tr>
</tbody>
</table>
So... what happened to everything else?
Fire timing and peak forage biomass

Standing biomass, kg DM / ha

<table>
<thead>
<tr>
<th></th>
<th>Early spring</th>
<th>Mid-summer</th>
<th>Late summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-July</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>P = 0.78</td>
<td>SEM = 360.2</td>
<td></td>
</tr>
</tbody>
</table>

Kansas State University
Fire timing and graminoid cover, % of total basal cover

<table>
<thead>
<tr>
<th>Item</th>
<th>Early spring</th>
<th>Mid-summer</th>
<th>Late summer</th>
<th>SEM*</th>
<th>P-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total grass cover, %</td>
<td>82.8</td>
<td>85.9</td>
<td>86.5</td>
<td>2.17</td>
<td>0.20</td>
</tr>
<tr>
<td>C4 grasses, %</td>
<td>67.7</td>
<td>65.9</td>
<td>64.8</td>
<td>3.40</td>
<td>0.70</td>
</tr>
<tr>
<td>C3 grasses and sedges, %</td>
<td>15.1</td>
<td>19.7</td>
<td>21.7</td>
<td>3.11</td>
<td>0.11</td>
</tr>
<tr>
<td>Annual grasses, %</td>
<td>0.07</td>
<td>0.33</td>
<td>0</td>
<td>0.227</td>
<td>0.31</td>
</tr>
</tbody>
</table>

* Mixed-model SEM associated with comparison of treatment main effect means.
† Treatment main effect.
Fire timing and forb cover, % of total basal cover

<table>
<thead>
<tr>
<th>Item</th>
<th>Early spring</th>
<th>Mid-summer</th>
<th>Late summer</th>
<th>SEM*</th>
<th>P-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total forb cover, %</td>
<td>15.4</td>
<td>12.1</td>
<td>11.2</td>
<td>2.28</td>
<td>0.16</td>
</tr>
<tr>
<td>Perennial forbs, %</td>
<td>15.3<sup>a</sup></td>
<td>10.9<sup>b</sup></td>
<td>9.7<sup>b</sup></td>
<td>2.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Sericea lespedeza, %</td>
<td>7.3<sup>a</sup></td>
<td>3.4<sup>b</sup></td>
<td>1.7<sup>b</sup></td>
<td>1.56</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Baldwin’s ironweed, %</td>
<td>0.7<sup>a</sup></td>
<td>0.2<sup>b</sup></td>
<td>0.4<sup>b</sup></td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>Western ragweed, %</td>
<td>3.3<sup>a</sup></td>
<td>0.9<sup>b</sup></td>
<td>0.7<sup>b</sup></td>
<td>0.53</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Major wildflowers, %</td>
<td>0.6<sup>a</sup></td>
<td>0.9<sup>ab</sup></td>
<td>1.4<sup>b</sup></td>
<td>0.28</td>
<td>0.03</td>
</tr>
<tr>
<td>Annual forbs, %</td>
<td>0.1<sup>a</sup></td>
<td>1.2<sup>b</sup></td>
<td>1.5<sup>b</sup></td>
<td>0.52</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* Mixed-model SEM associated with comparison of treatment main effect means.
† Treatment main effect.
^{a, b} Within row, means with unlike superscripts differ ($P \leq 0.05$).
Fire timing and forb cover, % of total basal cover

<table>
<thead>
<tr>
<th>Item</th>
<th>Early spring</th>
<th>Mid-summer</th>
<th>Late summer</th>
<th>SEM*</th>
<th>P-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total forb cover, %</td>
<td>15.4</td>
<td>12.1</td>
<td>11.2</td>
<td>2.28</td>
<td>0.16</td>
</tr>
<tr>
<td>Perennial forbs, %</td>
<td>15.3<sup>a</sup></td>
<td>10.9<sup>b</sup></td>
<td>9.7<sup>b</sup></td>
<td>2.05</td>
<td>0.02</td>
</tr>
<tr>
<td>Sericea lespedeza, %</td>
<td>7.3<sup>a</sup></td>
<td>3.4<sup>b</sup></td>
<td>1.7<sup>b</sup></td>
<td>1.56</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Baldwin’s ironweed, %</td>
<td>0.7<sup>a</sup></td>
<td>0.2<sup>b</sup></td>
<td>0.4<sup>b</sup></td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>Western ragweed, %</td>
<td>3.3<sup>a</sup></td>
<td>0.9<sup>b</sup></td>
<td>0.7<sup>b</sup></td>
<td>0.53</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Major wildflowers<sup>‡</sup>, %</td>
<td>0.6<sup>a</sup></td>
<td>0.9<sup>ab</sup></td>
<td>1.4<sup>b</sup></td>
<td>0.28</td>
<td>0.03</td>
</tr>
<tr>
<td>Annual forbs, %</td>
<td>0.1<sup>a</sup></td>
<td>1.2<sup>b</sup></td>
<td>1.5<sup>b</sup></td>
<td>0.52</td>
<td>0.02</td>
</tr>
</tbody>
</table>

* Mixed-model SEM associated with comparison of treatment main effect means.
† Treatment main effect.
‡ Combined basal cover of catclaw sensitive briar, dotted gayfeather, heath aster, prairie coneflower, purple poppy-mallow, purple prairie-clover, round-headed prairie clover, and white prairie-clover.

^{a, b} Within row, means with unlike superscripts differ (P ≤ 0.05).
Fire timing and plant-species diversity

<table>
<thead>
<tr>
<th>Item</th>
<th>Early spring</th>
<th>Mid-summer</th>
<th>Late summer</th>
<th>SEM*</th>
<th>P-value\†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall species richness</td>
<td>22<sup>a</sup></td>
<td>27<sup>b</sup></td>
<td>27<sup>b</sup></td>
<td>1.6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Native species richness</td>
<td>21<sup>a</sup></td>
<td>25<sup>b</sup></td>
<td>26<sup>b</sup></td>
<td>1.6</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Graminoid richness</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>0.6</td>
<td>0.46</td>
</tr>
<tr>
<td>Forb richness</td>
<td>10<sup>a</sup></td>
<td>15<sup>b</sup></td>
<td>15<sup>b</sup></td>
<td>1.2</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Forb evenness</td>
<td>0.70<sup>a</sup></td>
<td>0.76<sup>b</sup></td>
<td>0.81<sup>b</sup></td>
<td>0.039</td>
<td>0.02</td>
</tr>
<tr>
<td>Forb diversity</td>
<td>0.57<sup>a</sup></td>
<td>0.73<sup>b</sup></td>
<td>0.83<sup>b</sup></td>
<td>0.066</td>
<td>< 0.01</td>
</tr>
</tbody>
</table>

^{a, b} Within row, means with unlike superscripts differ ($P \leq 0.05$).
Lessons Learned

• Most of the value of rangeland to society can’t be quantified by animal production or animal-based revenue

• Understanding the basic biology of invasive organisms is essential to find their Achilles’ Heel(s)

• For most invasive organisms, multi-faceted control mechanisms will likely be necessary to cover an inclusive range of land managers

• You won’t know all you need to know to find answers – learn it from colleagues and students

• Every location has enigmatic agricultural problems, related to invasive species or otherwise.
 • Some are shared with other regions. You own the rest. Don’t expect enthusiastic buy-in from “outside” funding sources.
 • Find ways to engage the stakeholder base.
 • Keep knocking on doors; eventually, somebody with a checkbook will respond.